CollegeQandA asks: Should I major in Engineering?

Should I major in Engineering?

Engineering BuildingShould I major in Engineering?  This is a specific question that I’m dealing with here, but one that I’m biased towards, and therefore, I have an opinion on.  The answer is yes.

I think engineering is a great major.  Student’s who complete this major have the capabilities to do and learn almost anything afterwards.  Getting the engineering degree, however, is a commitment that takes both significant time and effort.  In many ways, I feel like my undergraduate degree was harder than anything I have done and learned since (though improving my writing has been exceptionally hard).

What is Engineering?

This question should be asked and explored by every major where you replace engineering with your major.  In most cases, the answers are very broad since a major is a label for a vast area of human knowledge and exploration, but practitioners should be able to give you a sense of what a particular major is.

Broadly, engineering, which is sometimes called applied science, is solving problems (by designing a solution) with the use of techniques and knowledge from mathematics and science while constrained by financial and ethical realities.  The types of problems are broad coming from areas such as the health industry to the retail industry, but they have one common aspect.  These problems are our problems whether they be human desires or human challenges.

Most people living in the first world can look around the room they are in presently, and almost every item in that room has gone through stages of engineering problem solving to create the item cheaply, safely, efficiently, etc.  Look at the power outlet.  The screws, the face plate, the outlet, etc. were all designed by an engineer(s).

What do you study in an Engineering major?

Engineering is a broad category that is broken down into specializations such as mechanical, electrical, computer, and chemical engineering (to name a few).  Typically, these specializations are created when there is enough industrial and commercial demand that future engineers in those domains need a focused set of courses covering specific topics.  For example, there is not much difference between electrical and computer engineers, but because of the rise of the computer industry in the 80s and 90s we made the distinction.  However, engineers start all their majors dealing with common introductory topics such as calculus, algebra, probability, statistics, physics, chemistry, programming that apply to almost all engineering fields.

At most schools, the first two years of a major deal with these broad basics in mathematics, sciences, and communication (written and spoken).  In the second year, students will start learning about the basics of the domain they have chosen to major in and will start to see how some of the earlier learned basics are applied to some aspect of the domain.

The third and fourth years will cover more in depth topics as related to the field, but this is just a sample of what practicing engineers do, and even in a field such as electrical engineering a student will further specialize in an area such as communication, electronics, electromagnetics, photonics, power, etc.

The reality is an undergraduate engineering degree is a broad exposure to a field where that student is expected to apply science, math, and engineering design to solve problems.  This, typically, means that engineering has a doing portion where throughout their study, students will build artifacts and prototypes in the lab and in design courses.  However, there are so many careers that an engineer could take that even the senior courses are broad introductions to the specialities.

Why is it such a great major?

In my opinion, an engineering major pushes a person’s mind not only in how to design a working system that solves a problem, but solves that problem with an understanding/application of science and mathematics as tools.  In other words, the major will push your brain to grow in leaps and bounds each semester with challenging ideas that are both theoretical and practical.  At the the end of the degree, you are directly employable since you can build things to solve problems.  Still, you don’t have to be a practicing engineer since the skills learned can be applied to a vast range of problems and opportunities in all varieties of areas.  The degree is not to be taken lightly, but those of you who are committed and willing to work and learn hard will find the results very satisfying.

Credits: photo titled: engineering; by DaveBleasdale

Published by

johnys12

Oh where to start, where to start. How about an all encompassing word: Pleated

Leave a comment